A Microwave Measurement Procedure for a Full Characterization of Ortho-Mode Transducers

O. A. Peverini, R. Tascone, A. Olivieri, M. Baralis, R. Orta, G. Virone
IEIIT (C.N.R.) and Dip. di Elettronica, Politecnico di Torino
C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Ortho-mode transducers (OMTs) are key components in both dual-polarized antenna feed systems for telecommunication and radio-astronomy applications. The evaluation of the overall system performance requires the measurement of the return loss, isolation and cross-coupling levels of the OMTs. In this paper a novel technique for the microwave measurements of the full 4×4 scattering matrix of such devices is reported, which is based on different measurements at the single-polarized ports.

I. INTRODUCTION

Ortho-mode transducers (OMTs) are waveguide components used to select orthogonally polarized modes propagating in a circular or square waveguide, usually called common port [1], [2]. The full characterization of OMTs by means of their 4×4 scattering matrix is required in order to evaluate the overall performance of dual-polarized antenna feed systems. OMTs are also key components in radiometers used in radio-astronomy for the detection of the polarized sky emission [3], as in the SPOrt (Sky Polarization Observatory) project [4], where correlation radiometers are used to detect simultaneously the Q and U Stokes parameters. One figure of merit of a correlation radiometer is its rejection to the unpolarized emission. High rejections are obtained by means of OMTs exhibiting very low cross-coupling coefficients S_{14}, S_{23}, where S_{ij} are the scattering parameters of the OMT labeled according to Fig. 1, where the ports 1 and 2 are directly coupled to ports 3 and 4, respectively.

OMTs with high performances require accurate measurements of all their scattering parameters. In [1], [5], [6] the OMTs were experimentally characterized by measuring directly the return loss and the isolation at the single polarized ports. In [7] high levels of cross-couplings are reported as well, but the measurement conditions are not described. In order to derive a complete experimental characterization of the OMT, one could think to perform a measurement procedure similar to those applied in the calibration of network analyzers, as the thru-reflection-line (TRL) algorithm [8], [9]. In particular, the OMT could be regarded as the transition block used in the multimode TRL procedure described in [10]. This block relates one common multimode waveguide supporting N modes to N single-mode lines. A basic cornerstone of this procedure is the ordering of the eigenvalues corresponding to the phase-delay of each mode in the common waveguide. Obviously, this can be accomplished only for non degenerate modes, i.e. modes exhibiting different propagation constants. Unfortunately, this is not the case of interest. In fact, as far as OMTs are concerned, their common port is a square or circular waveguide supporting two degenerate modes. Hence, this technique is not applicable.

In this paper a new procedure for the measurements of the full 4×4 scattering matrix of OMTs is proposed, which is based on the elaboration of five measurements at the single polarized ports, when the common waveguide is loaded with: a matched load; an unknown diagonal reactive load defining the two polarizations directions; an ideal short circuit; the diagonal reactive load and the short circuit both shifted by a line of unknown length. Moreover, as far as the practical aspects are concerned, during the measurement sequence the network analyzer cables are kept connected to the single-polarized ports, avoiding any movement of the cables, which degrades the measurement accuracy.
Fig. 1. Schematic representation of the OMT and of the generic load $\Gamma_{L,i}$ to be connected at the common port, which consists of the two electrical ports (3) and (4). The ports 1 and 2 are directly coupled to electrical ports 3 and 4, respectively.

II. THEORY

A. Measurement Activity

The measurement technique presented in this paper is based on a set of five 2×2 reflection measurements performed by means of a vectorial network analyzer connected to the two single-polarized ports (ports 1 and 2 in Fig. 1), when the common port is terminated with five different loads. The 2×2 reflection coefficient measured at the ports 1 and 2 can be expressed as [11]:

$$\Gamma_i = S_{i1} + S_{i2} \cdot (\Gamma_{L,i}^{-1} - S_{22})^{-1} \cdot S_{21} \quad (1)$$

where $\Gamma_{L,i}$ is the 2×2 reflection coefficient of the load connected to the OMT common port and S_{ij} are the 2×2 blocks of the 4×4 OMT scattering matrix:

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} \quad , \quad \begin{bmatrix} a_3 \\ a_4 \end{bmatrix} = \Gamma_{L,i} \begin{bmatrix} b_3 \\ b_4 \end{bmatrix} \quad (2)$$

being a_i and b_i ($i = 1..4$) the incident and scattered waves with respect to the OMT (see Fig. 1).

The first step is to measure the 2×2 S_{11} block of the OMT. This can be performed by directly connecting a matched load ($\Gamma_{L,0} = 0$) to the common port. If a matched load with good performances is not available, these parameters can be measured by using any unknown dual-mode transition connected to the common port, as explained in the Appendix. Next, the four 2×2 reflection coefficients Γ_i at the ports 1 and 2 are measured by terminating the common port on the following four different loads $\Gamma_{L,i}$:

- $\Gamma_{L,1}$ is a reactive load, which is diagonal with respect to the basis formed by the two polarizations of interest. It is necessary that the phases of the reflection coefficients of the load corresponding to the two polarizations are different;
- $\Gamma_{L,2}$ is obtained by inserting a h-long waveguide between the common port and the reactive load $\Gamma_{L,1}$, i.e. $\Gamma_{L,2} = e^{-2j\theta} \cdot \Gamma_{L,1}$, where $e^{-2j\theta}$ is a diagonal matrix with $\theta_l = \beta_l h$, being β_l ($l = 1, 2$) the longitudinal propagation constant of the two degenerate modes of the waveguide at the common port. Here, for generality, they are considered different;
- $\Gamma_{L,3}$ is a short circuit, i.e. $\Gamma_{L,3} = -I$, with I denoting the 2×2 identity matrix;
\(\Gamma_{L,4} \) corresponds to the short circuit shifted by the \(h \)-long waveguide, i.e. \(\Gamma_{L,4} = -\frac{e^{-2j\theta}}{\xi} \).

On the basis of this set of measurements (\(S_{11} \) and \(\Gamma_i \) with \(i = 1..4 \)), one can write:

\[
S_{22} = \Gamma_{L,i}^{-1} - S_{21} \cdot A_i^{-1} \cdot S_{12} \quad i = 1..4
\]

(3)

where \(A_i = \Gamma_{L,i} - S_{11} \) are measured and symmetric matrices. By equating the two expressions of \(S_{22} \) corresponding to \(i = m \) and \(i = n \), one obtains the following equation:

\[
S_{12} \cdot (\Gamma_{L,m}^{-1} - \Gamma_{L,n}^{-1})^{-1} \cdot S_{12}^T = (A_m^{-1} - A_n^{-1})^{-1} = B_{mn} \quad \forall m, n = 1..4
\]

(4)

where \((..)^T \) indicates the transposition operation. As in the multimode TRL technique [10], in order to evaluate the \(S_{12} \) block one could use the following three matrices:

\[
B_{13} = S_{12} \cdot (I + \Gamma_{L,1})^{-1} \cdot S_{12}^T
\]

(5)

\[
B_{24} = S_{12} \cdot (I + \Gamma_{L,1})^{-1} \cdot \frac{e^{-2j\theta}}{\xi} \cdot S_{12}^T
\]

(6)

\[
B_{13} = S_{12} \cdot (I - \frac{e^{2j\theta}}{\xi})^{-1} \cdot S_{12}^T
\]

(7)

In particular, the matrix \(B_{13} \) is derived by combining the measurements corresponding to the reactive load \(\Gamma_{L,1} \) and to the short circuit \(\Gamma_{L,3} \), whereas \(B_{24} \) corresponds to the reactive load and the short circuit, both set back by the \(h \)-long line (\(\Gamma_{L,2} \) and \(\Gamma_{L,4} \), respectively). Finally, \(B_{13} \) refers to the measurements performed with the short circuit in the two positions: directly connected (\(\Gamma_{L,3} \)) and shifted by the \(h \)-long line (\(\Gamma_{L,4} \)). At this point, one can note that:

\[
B_{24} \cdot B_{13}^{-1} = S_{12} \cdot \frac{e^{-2j\theta}}{\xi} \cdot S_{12}^{-1}
\]

(8)

so that the phase delay matrix \(\frac{e^{-2j\theta}}{\xi} \) and the \(S_{12} \) block correspond to the eigenvalues (\(\Lambda \)) and eigenvectors (\(\underline{U} \)) matrices of \(B_{24} \cdot B_{13}^{-1} \), respectively, i.e:

\[
\frac{e^{-2j\theta}}{\xi} = \Lambda
\]

(9)

\[
S_{12} = \underline{U} \cdot \underline{K}
\]

(10)

where \(\underline{K} \) is a diagonal matrix, which sets the amplitudes of the eigenvectors and it is determined by inserting (10) in (7):

\[
\underline{K} = \pm \sqrt{\underline{U}^{-1} \cdot B_{13} \cdot \underline{U}^{-1}^T \cdot (I - \frac{e^{2j\theta}}{\xi})}
\]

(11)

The sign indetermination appearing in the definition of \(\underline{K} \) is due to the 180-degrees indetermination of the scattering transmission coefficients \(S_{12} \).

The described procedure can be carried out only if the common port supports non degenerate modes, so that all the eigenvalues \(\lambda^i \) are different and to each of them corresponds a one-dimensional subspace, which is spanned by the corresponding eigenvector. This constraint applies also to the procedure described in [10]. Unfortunately, the OMT common port supports two degenerate modes exhibiting the same propagation constant \(\beta \), so that the corresponding eigenspace is bidimensional and the eigenvectors are not uniquely defined. Therefore, the described procedure can be applied only for the evaluation of the common phase delay \(\theta = \beta h \), but does not provide the \(S_{12} \) block. For this purpose, a novel algorithm is reported in the following subsection.
B. Decomposition Algorithm

In order to evaluate the S_{12} block of the OMT, the decomposition suggested by (4) is used. For sake of clearness, it is convenient to rewrite (4) in the more general form:

$$S \cdot D \cdot S^T = B$$ \hspace{1cm} (12)

where S is the unknown matrix to be determined, D is an unknown diagonal matrix and B is a known symmetric matrix. Application of the spectral decomposition to matrix B yields:

$$B = T \cdot \Lambda \cdot T^{-1}$$ \hspace{1cm} (13)

with Λ being the diagonal eigenvalue matrix of B and T being a matrix containing the corresponding eigenvectors. It has to be reminded [12], that for a real symmetric matrix the corresponding eigenvectors are orthogonal with respect to the real scalar product, i.e. with a particular choice of the eigenvectors, $T^T \cdot T = I$ (the inverse matrix corresponds to its transposed matrix). Obviously, this property holds also for complex symmetric matrices even if the complex eigenvectors are not orthogonal with respect to the complex scalar product: $T^H \cdot T \neq I$, denoting $(\ldots)^H$ the hermitian operation. Hence, one can choose the complex amplitude of the eigenvectors so that

$$B = T \cdot \Lambda \cdot T^T$$ \hspace{1cm} (14)

In the remainder of the paper, the extension to the complex case of the property $T^T \cdot T = I$ is referred to as pseudo-orthogonality. Unfortunately, matrices Λ and T differ, respectively, from matrices D and S appearing in (12). In fact, decomposition (14) is not unique, since its most general form is:

$$B = T \cdot P \cdot (P^{-1} \cdot \Lambda \cdot P^{-1}^T) \cdot P^T \cdot T^T$$ \hspace{1cm} (15)

where P is an unknown full matrix, which satisfies the following conditions:

$$D = P^{-1} \cdot \Lambda \cdot P^{-1}$$ \hspace{1cm} (16)

$$S = T \cdot P$$ \hspace{1cm} (17)

Since (16) can be rewritten as:

$$\Lambda^{-1/2} \cdot P \cdot D \cdot P^T \cdot \Lambda^{-1/2} = I$$ \hspace{1cm} (18)

one can define the pseudo-orthogonal matrix:

$$Q = \Lambda^{-1/2} \cdot P \cdot D^{1/2}$$ \hspace{1cm} (19)

so that:

$$Q \cdot Q^T = I$$ \hspace{1cm} (20)

Using the matrix Q, the expression (17) for the S block becomes:

$$S = T \cdot P = T \cdot \Lambda^{1/2} \cdot Q \cdot D^{-1/2}$$ \hspace{1cm} (21)

where T and Λ are known matrices, whereas the pseudo-orthogonal matrix Q and the diagonal matrix D are yet to be determined. It has to be noted that the ordering of the eigenvalues Λ is not required, since it is taken into account in the evaluation of the matrix Q.

By applying (21) for the matrix B_{21} obtained by considering in (4) the loads $\Gamma_{L,1}$ and $\Gamma_{L,2}$, which correspond to the the reactive load connected directly and shifted by the h-long line, respectively:

$$B_{21} = S_{12} \cdot (\xi_{L}^{2\theta} - I)^{-1} \cdot \Gamma_{L,1} \cdot S_{12}^T$$ \hspace{1cm} (22)
Fig. 2. Step discontinuity short circuited at a distance $s = 3.5\,\text{mm}$ used as reactive load $\Gamma_{L,1}$ in the square waveguide: $a = 6\,\text{mm}$, $c = 3.5\,\text{mm}$, $L = 24\,\text{mm}$.

one obtains the following expression for the S_{12} block:

$$S_{12} = T_{21} \cdot \Delta_{21}^{1/2} \cdot Q \cdot \Gamma_{L,1}^{-1/2} \cdot (e^{2i\theta} - I)^{1/2}$$ \hspace{1cm} (23)

where Δ_{21} and T_{21} are the eigenvalues and the pseudo-orthogonal eigenvectors matrices of B_{21}, respectively. The common phase delay due to the line θ is computed by evaluating the average of the two eigenvalues of (8), which could be slightly different because of the measurement uncertainties. In order to derive the unknown matrices Q and $\Gamma_{L,1}$, one has to consider the matrix B_{43} defined in (7). Indeed, substitution of (23) in (7) yields:

$$-\Delta_{21}^{-1/2} \cdot T_{21}^T \cdot B_{43} \cdot T_{21} \cdot \Delta_{21}^{-1/2} = Q \cdot \Gamma_{L,1}^{-1} \cdot Q^T$$ \hspace{1cm} (24)

It is to be noted, that the l.h.s. of (24) is a known matrix, which can be denoted by C, and that Q is a pseudo-orthogonal matrix, as stated by (20). Therefore, (24) is equivalent to:

$$C = Q \cdot \Gamma_{L,1}^{-1} \cdot Q^{-1}$$ \hspace{1cm} (25)

From (25), it is evident that the unknown diagonal reflection coefficient matrix $\Gamma_{L,1}$ corresponds to the inverse of the eigenvalue matrix of C and Q is a proper choice of the corresponding eigenvectors matrix satisfying the pseudo-orthogonality condition $Q^T \cdot Q = I$. The ordering of the eigenvalues of the matrix C can be accomplished by using a rough estimate of the reflection coefficients of the reactive load $\Gamma_{L,1}$ (capacitive or inductive behaviour) and by enforcing the continuity during a frequency sweep. Finally, the S_{22} block can be derived by applying (3) for any value of the index i.

As a final comment to (23), it can be noticed that in this expression the S_{12} block contains an indetermination concerning the following parameters:

- the directions of the eigenvectors of B_{21} (columns of T_{21});
- the signs of the square root of the eigenvalues Δ_{21};
- the directions of the eigenvectors of Q (columns of Q);
- the signs of the square root of $\Gamma_{L,1}^{-1} \cdot (e^{2i\theta} - I)$.

It can be easily proved that all these factors result into a sign indetermination of the columns of S_{12}, which is typical of scattering coefficients of the transmission type. As a consequence, the off-diagonal elements of the S_{22} block, via (3), exhibit the same indetermination. This uncertainty means that the sign of the vertical and of the horizontal polarizations at the common port can obviously not be determined.
III. EXPERIMENTAL RESULTS

In order to evaluate the level of reliability of the algorithm, the procedure presented in the previous section was applied to measure a Ka-band OMT with a $6 \text{ mm} \times 6 \text{ mm}$ square waveguide as common port and standard WR28 rectangular waveguides as single-polarized ports. The load $\underline{L}_{p,1}$ refers to a symmetrical step parallel to the waveguide walls, short-circuited at a distance $s = 3.5 \text{ mm}$ and with aperture $c = 3.5 \text{ mm}$. The step is placed at $L = 24 \text{ mm}$ from the reference plane as sketched in Fig. 2. Its realization is obtained by cascading the 24 mm-long square waveguide, the 3.5 mm-thick iris and the short circuit shown in Fig. 3. The matched load, consisting of a pyramidal absorber of lossy material ECCOSORB MF190 to be inserted in the 80 mm-long square waveguide, and the 3.5 mm-long line are reported in the same picture. The diagram (a) of Fig. 4 shows the measured and simulated reflection coefficients S_{11} and S_{22} at the rectangular ports 1 and 2, which couple to the vertical (3) and horizontal (4) polarizations in the square port, respectively. The diagram (b) reports the reflection coefficients S_{33} and S_{44} relative to the vertical and horizontal polarization at the square port. The simulations were carried out by the method of moments applied in the spectral domain. In particular, the full-wave analysis of the OMT was obtained by cascading the generalized scattering matrix of each discontinuity [11]. The good agreement between the simulated and measured reflection coefficients at the common port up to 35 GHz confirms the applicability of the presented measurement technique. It has to be noted, that for higher values of frequency the present method starts to fail because the OMT exhibits a high reflection coefficient at the rectangular ports for these frequencies. In this situation, the signal is mainly reflected, so that the square port is almost not accessible for the electromagnetic waves excited at the rectangular ports. Hence, in this condition, it is not possible to derive accurate information about the electromagnetic behaviour of the device at the common port by using only measurements performed at the rectangular ports.

Fig. 5 shows the isolation S_{21} and the cross-couplings S_{41} and S_{32} of the OMT, which are better than -60 dB in the band of interest $[30.4, 33.6] \text{ GHz}$. It has to be observed that the isolation is the off-diagonal element of the S_{ij} block, which in this case is directly measured by connecting the common port to a matched load. The matched load presents a residual reflection coefficient in the order of -50 dB for the diagonal elements, while its off-diagonal elements, inducing a depolarization effect, are some orders of magnitude lower. In particular, in order to measure an isolation of -70 dB as reported in Fig. 5, the matched load must introduced a polarization coupling at the worst of the same level. This is possible by controlling the geometrical symmetry of the matched load in the square waveguide. Moreover, it was numerically verified that the diagonal/off-diagonal elements of the S_{ij} blocks are effected by the residual values of the diagonal/off-diagonal coefficients of the matched load.
Fig. 4. Measured and simulated reflection coefficients of the Ka-band OMT under test. (a) at the two rectangular ports. (b) at the common square port (3 and 4 denote vertical and horizontal polarizations, respectively).

Fig. 5. Measured isolation and cross-coupling of the Ka-band OMT under test.

As an indicator for the measurement reliability of the presented procedure, a figure of merit is the agreement between the predicted and the extracted reflection coefficient \(\Gamma_{11} \) of the short-circuited step via the eigenvalue problem (25). As shown in Fig. 6, the simulated and the measured reflection coefficients for both the vertical and horizontal polarizations are in very good agreement up to 35 GHz. In particular, in the band of interest the maximum difference of the phase between the measurements and simulation is less than 1 degree. A further indicator of the quality of the procedure and of the standards used in the measurements is the agreement between the theoretical and the measured phase delay introduced by the square waveguide. In particular, the phase delay is extracted via the eigenvalue equation (8). Although the two eigenvalues should be ideally identical, the measurements produce two different values of the phase delay as shown in Fig. 7. Nevertheless, this discrepancy is less than 1 degree in the band of interest and the measured values agree with the theoretical one for a square waveguide with side \(a = 5.991 \text{ mm} \) and length \(h = 3.486 \text{ mm} \) (nominal values: \(a = 6 \text{ mm} \) and
Fig. 6. Measured and simulated reflection coefficients of the short-circuited step described in the text, which was used as the load \(\Gamma_{-1} \) in the measurement of the Ka-band OMT under test. Dashed line: measurement - vertical polarization; solid line: measurement - horizontal polarization; triangles: simulation - vertical polarization; squares: simulation - horizontal polarization.

\[h = 3.5 \text{ mm} \).}

IV. Conclusions

The measurement procedure presented in this paper allows the full characterization of OMTs by performing a set of measurements at the single polarized ports. In this way, the network analyzer cables are maintained in the same position avoiding a degradation of the measurement accuracy. This technique provides an accurate evaluation of the cross-coupling terms, which defines the degree of purity of the polarization at the common port, without the knowledge of multimodal standards, such as another calibrated OMT. Generally speaking, the scattering parameters involving the common port are expressed in the basis where the reflection operator of the reactive load, used as a reference, is diagonal. In particular, using \(E/H \)-plane short circuited steps the scattering parameters refer to the two linear polarizations. As a further comment, we can say that an accurate characterization of OMTs, such that presented in this paper, allows the realization of a multimode measurement setup useful for the experimental investigation of the cross-polarization induced by waveguide polarizers.

APPENDIX

As stated in the previous sections, the \(S_{14} \) block of the OMT can be measured by connecting a matched load to the common port. If a matched load exhibiting low values of reflection and depolarization is not available, then the \(S_{14} \) block can be evaluated by connecting the OMT common port to an unknown dual-mode transition, as sketched in Fig. 8. This transition can be any device, which makes observable at the single-mode ports the bidimensional polarization space at the common port. Obviously, another OMT satisfies this condition. As in the TRL calibration procedure [10], two sets of measurements are performed. First the OMT is directly connected to the transition (through) obtaining the transmission matrix:

\[M_{1} = T \cdot A \]

(26)
where \mathbf{T} and \mathbf{A} denote the transmission matrices of the OMT and of the transition, respectively. In particular, with reference to Fig. 8 the transmission matrix \mathbf{T} is defined as follows:

$$
\begin{bmatrix}
 c_1^+
 \\
 c_2^+
 \\
 c_1^-
 \\
 c_2^-
\end{bmatrix} =
\begin{bmatrix}
 T_{11}^+ & T_{12}^+
 \\
 T_{21}^- & T_{22}^-
\end{bmatrix}
\begin{bmatrix}
 c_3^+
 \\
 c_4^+
 \\
 c_3^-
 \\
 c_4^-
\end{bmatrix}
$$

(27)

where c_i^\pm are the amplitudes of the progressive and regressive waves at the ith port, respectively. The same definition applies also to the matrix \mathbf{A}.

Then, a line is set between the two common ports and a transmission matrix \mathbf{M}_2 is obtained, such that:

$$
\mathbf{M}_2 = \mathbf{T} \cdot \mathbf{D} \cdot \mathbf{A}
$$

(28)

being \mathbf{D} the diagonal transmission matrix of the line:

$$
\mathbf{D} =
\begin{bmatrix}
 e^{2\gamma l} & 0 \\
 0 & e^{-2\gamma l}
\end{bmatrix}
$$

(29)

By defining the matrix:

$$
\mathbf{M} = \mathbf{M}_2 \cdot \mathbf{M}_1^{-1} = \mathbf{T} \cdot \mathbf{D} \cdot \mathbf{T}^{-1}
$$

(30)

the transmission matrix of the OMT coincides with the eigenvectors matrix of \mathbf{M}:

$$
\mathbf{V} =
\begin{bmatrix}
 V_{11} \\
 V_{12} \\
 V_{21} \\
 V_{22}
\end{bmatrix}
$$

(31)

As it is well known the \mathbf{S}_{11} block can be written in terms of the \mathbf{T}_{11} and \mathbf{T}_{21} blocks of the transmission matrix as:

$$
\mathbf{S}_{11} = \mathbf{T}_{21} \cdot \mathbf{T}_{11}^{-1}
$$

(32)

which requires the columns of the eigenvectors matrix \mathbf{V} to be ordered according to the definition (27). Although the discrimination between progressive and regressive modes is trivial, an ordering between
the two degenerate progressive modes can not be carried out and the eigenvectors are not uniquely defined. Nevertheless, a generic linear combination of the two progressive eigenvectors $\hat{V}_{1}^{+}, \hat{V}_{2}^{+}$ can be expressed as:

$$\begin{bmatrix} \hat{V}_{1}^{+} \\ \hat{V}_{2}^{+} \end{bmatrix} = [V_{1}^{+} \quad V_{2}^{+}] \cdot L$$

where L is any full unknown 2×2 matrix. According to (33), the T_{11} and T_{21} blocks can be evaluated as:

$$T_{11} = V_{11} \cdot L, \quad T_{21} = V_{21} \cdot L$$

Substitution of (34) in (32) leads to:

$$S_{11} = T_{21} \cdot T_{11}^{-1} = V_{21} \cdot V_{11}^{-1}$$

which holds without any assumption about the matrix L. This means that the evaluation of the S_{11} does not depend on the basis used to describe the propagation in the common waveguide.

ACKNOWLEDGMENTS

The authors would like to thank Mr. M. Franciotti for the OMT prototype manufacturing. This work was sponsored by ASI (Italian Space Agency).

REFERENCES

