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TABLE 1. SPOrt expected performance.

� (GHz) Ppix(ave)
a (�K) Prms (FS)

b (�K) Prms (GC)
c (�K)

22 13.4 0.52 0.64
32 13.8 0.54 0.66
60 14.7 0.57 0.70
90 16.8 0.65 0.81
a Computed for 50% e�ciency and 10% frequency bandwidth.
b Full sky (FS) coverage is 81.7% of 4� sr, including 662 pixels.
cGalactic cut (GC) excludes a �20� belt about the Galactic plane,
retaining 445 pixels.
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FIGURE 1. Galactic projection of the SPOrt sky coverage. Exposure times in seconds are shown on the right bar.
Regions around the celestial poles (marked) are uncovered because of pointing constraints.

SPOrt'S CHARACTERISTICS

The expected performance for each of the frequency channels (22, 32, 60 and 90 GHz) is summarized in Table
1. Column 2 in the Table gives the mean sensitivity per 7� pixel, expressed in terms of the total polarized
intensity P = (Q2 + U2)

1

2 . The integration time per pixel will depend on sky coordinates, ranging from 29.7
Kilosec (for low values of declination �) to 128.5 Kilosec (for the largest values of j�j compatible with the orbit
of ISS). The reported Prms are computed using actual integration times and the noise-equivalent temperatures
reported by (3), the spurious polarization limit being lower than noise. They also include a 50% e�ciency
factor. Column 3 in the Table gives the full-sky sensitivity for the total sky coverage, which includes 662 pixels
and is shown in Figure 1. The last column gives the sensitivity after subtraction of a Galactic plane belt of
�20�. Clearly the pixel sensitivity Ppix is intermediate between the expected sensitivities of MAP (1) and
PLANCK (2). However the beamwidth is much larger here, so that the full-sky Prms cannot be better than
0.5{0.6 �K for each channel.

THE EXPECTED SCENARIO FOR GALACTIC FOREGROUNDS

Generally speaking, both the Galactic and the extragalactic background should be considered as foregrounds
with respect to CBR. However the extragalactic source contribution should be negligible at our resolution.
Galactic emission includes three contributions related to di�erent physical processes, namely, synchrotron
produced by relativistic electrons moving in the Galactic magnetic �eld, free-free (Bremsstrahlung) arising
from interaction between free electrons and ions in a plasma, and dust emission of thermal origin.



The frequency dependence of synchrotron emission is usually approximated by a power law in terms of
antenna temperature (but the spectral index depends on spatial position and also changes with frequency),

TS / �S ; S = �(2:6� 3:2): (1)

Large sky coverage surveys are only available at low frequencies (4{6), and extrapolations to the microwave
region can be made through Eq. (1). From the 1.4 GHz linearly polarized galactic emission survey of Brouw
and Spoelstra (4) with S = �3:2 we get TS(30 GHz) ' 40 �K. Constraints on the rms 
uctuation of the
emission are set from CBR anisotropy measurements. From COBE{DMR (7{8) we have a 7� 
uctuation
�TS <� 7 �K at 53 GHz. From the Tenerife experiment Davies and Wilkinson (9) are able to derive a 5�{8�


uctuation �TGalactic <� 43 �K at 10 GHz in the Northern low emissivity region, so that we can extrapolate
�TS(30 GHz) <� 2 �K; this limit however is not expected to hold over most of the sky. The intrinsic polarization
degree � = P=I can be easily predicted for synchrotron,

�S = (3S + 3)=(3S + 1); (2)

so that values as high as ' 75% are expected. However misalignment and smearing e�ects should reduce the
measurable �S, so that at 7

� a better estimate is probably <� 30%.
Free-free emission seems to be the main source of foreground at � >� 20 GHz for CBR anisotropy measure-

ments. Its spectral dependence is accurately described by a power law rather insensitive of spatial position and
frequency

TFF / �F ; F ' �2:15: (3)

From COBE{DMR Kogut et al. (7{8) it can be obtained �TFF(53 GHz) = 7 � 2 �K at jbj > 20� and some
correlation with dust, i.e., with DIRBE. From Tenerife the extrapolated limit �TFF(30 GHz) <� 4 �K is derived
(9), which again should not be considered as typical for the whole sky. Oliveira et al. (10) �nd DIRBE{
Saskatoon cross-correlations and derive �TFF(40 GHz) = 17� 10 �K at 1�. Free-free emission can be polarized
via Thomson scattering within optically thick plasma regions (11). At microwave wavelengths HII regions are
to be considered optically thin; thus estimating an �FF

<� 5% is probably a conservative upper limit.
Dust emission is modelled with power law with index 1.5�2; or with a greybody, or following Wright et al.

(12), with a mixture of two greybodies with emissivities ' 2,

TD / �D�2 [B� (20:4 K) + 6:7 �B� (4:77 K)] ; D ' 2: (4)

This emission is obviously better known at high frequencies. IRAS and DIRBE data at � � 103 GHz are
usually utilized for templates or cross-correlations (7,10) rather than extrapolations to the microwave region.
From COBE{DMR (8) we have �TD(53 GHz) = 2:7 � 1:3 �K, which implies �TD(100 GHz) � 10 �K. Dust
emission can be polarized (provided dust grains are aligned by the Galactic magnetic �eld), probably to a
level of � 10% (13). Sethi et al. (14) have recently provided a detailed modelling for the angular spectrum of
polarized dust emission. Using the Leiden{Dwingloo HI maps and a relation between dust optical depth and
HI column density, they compute the microwave emission over the sky, and from a model of spheroidal silicate-
graphite grains derive an intrinsic �D of 30%. Finally modelling the Galactic magnetic �eld they compute the
polarization reduction factor. From their results we derive the estimate PD ' 0:05 �K at � ' 100 GHz on
scales of 7�. This is considerably lower than the estimate from COBE{DMR with �D = 10%. The discrepancy
is indicative of the existing uncertainties on dust polarized emission at microwave frequencies.
In Fig. 2 we provide estimates for the Galactic foregrounds compared with SPOrt sensitivity limits. Clearly

synchrotron emission can easily be measured at the lowest frequencies. Free-free emission, on the other hand,
is not expected to dominate at any frequency in the 20{90 GHz range.

CBR POLARIZATION

Present experimental status

In the last two decades published results on CBR polarization show an improvement in sensitivity of roughly
one order of magnitude, which was not su�cient to give a positive detection. Table 2 reports the available



FIGURE 2. Expected Galactic foregrounds in the microwave region. Synchrotron (S) and free-free (FF) polarized

emissions are normalized to 18 �K and 2 �K, respectively, at 30 GHz, and dust (D) to 1 �K at 100 GHz. Also reported

are the CBR signal normalized to 1% and 10% of anisotropy, the experimental upper limits quoted in Table 2 and the

SPOrt sensitivities. For each frequency channel we give the maximum and minimum Ppix, and Prms.

upper limits on �rms, the rms polarization degree at the corresponding scales � for the sky coverages given in
the 4-th column. The most stringent limit is 16 �K on a scale of 1:�4, for a fairly wide window about the North
Celestial Pole (21). It should be noted that the upper limits on the full sky �rms would be even weaker than
those reported in Table 2.
As we shall discuss in the next Section, the goal must be a sensitivity better than a few �K at � < 1� and

better than a few tenths of �K at � > 1�. Several experiments are in preparation or in the course of execution
(22,23,11) at angular scales ranging from a few arcminutes to 14�. The best prospects for positive detection,
however, are linked to space experiments (1{3).

Theoretical predictions

The main sources of CBR polarization are the metric perturbations of spacetime, which include scalar (den-
sity), vector (velocity) and tensor (gravitational) waves; such perturbations directly generate anisotropy, and
polarization is thereby excited by the anisotropy quadrupole by the intervention of Thomson scattering in the
cosmic medium. Solutions of the transfer equation for polarized radiation in the cosmological environment have
been studied for a number of models; see refs. (24, 25), and also (26) for a short review. Theoretical predictions
from perturbation models are often expressed in terms of angular power spectra, which are connected to the
harmonic expansions

�T = T0
X
l;m

aT;lmYlm(#; ');

Q� iU = T0
X
l;m

�2aP;lm �2Ylm(#; ');

TABLE 2. Upper limits on CBR polarization degree.

Ref. � (GHz) � Sky coveragea �rms (�)

(15) 4.0 15� scattered 0.1
(16) 100{600 1:�5{40� GC (10{1)�10�4

(17) 9.3 15� � = +40� 6�10�4

(18) 33 15� � 2 (�37�;+63�) 6�10�5

(19) 5.0 1800{16000 � = +80� (1.4{0.4)�10�4

(20) 26{36 1:�2 NCP 1�10�5

(21) 26{36 1:�4 NCP 0.6�10�5

a GC = Galactic Center, NCP = North Celestial Pole.
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FIGURE 3. Polarization angular spectra from models of cosmic structure and Galactic dust emission. Full lines

describe the CBR polarization in SCDM models with a baryon density 
b = 0:03 and a scale-invariant spectrum of

scalar (S) waves, and are labelled by the corresponding values of zrh. Dashed lines refer to E- and B-parity contributions
from tensor waves (labelled by E and B respectively), and to the total scalar-plus-tensor (S+T) polarization, normalized

so as to get the same anisotropy quadrupole as in the scalar case. The dash-dotted curve considers a tilted n = 1:2

spectrum of scalar waves in the no-reheating model. Finally, the dotted curves describe the dust emission model of ref.

(14) (SPB) and the l�3 law referring to foreground anisotropies.

involving the scalar and spin-weighted spherical harmonics, respectively denoted by Y`m and �2Y`m (27). The
polarization spectrum is also altered substantially by gravitational lensing (28) and inhomogeneous reheating
(29) for l > 103; on SPOrt angular scale, however, only spacetime perturbations are e�ective. Since the
even (or electric) and odd (or magnetic) parities are separated through the linear combinations aE;lm =
� ( 2aP;lm + �2aP;lm) =2 and aB;lm = i ( 2aP;lm � �2aP;lm) =2, four angular power spectra are usually provided,

CXl =


a�X;lmaX;lm

�
; CCl =



a�T;lmaE;lm

�
; (5)

with X = T , E and B. (Cross-correlations other than C � T �E vanish identically.) The most obvious source
of polarization, i.e. the density perturbation which originated the observed cosmic structure, only produce
E-parity multipoles. E- and B-parity mixed �elds are produced by all of the other sources, and unfortunately,
by Galactic foregrounds (e.g., (14)).
The rms anisotropy and polarization at a given angular scale � can be estimated by �Trms(�) � T0

p
Tl�

and Prms(�) � T0
p
Pl� , where

Tl = l(l + 1)CTl=(2�); Pl = l(l + 1)CPl=(2�); (6)

with CPl = CEl+CBl and l� � 180�=�, so that the quantities de�ned by Eq. (6) are usually plotted for power
spectra. Examples are provided in Fig. 3. Full expressions of the polarization cross-correlation functions
(including the autocorrelation Prms(�) as a simple case) in terms of the angular power spectra are given by
Kamionkowsky et al. (30) and Ng and Liu (31).
Standard recombination models, where the CBR photons were last scattered at a redshift zrh � 1000,

predict low levels of polarization at angular scales � >� 1�. Calculations performed in the SCDM model (the
CDM model with the total density parameter 
0 = 1 and the reduced Hubble constant h = 1) show that
on a scale of 7� signals of order 0.05 �K are expected. Because of a signi�cant increase in the Pl spectrum
beyond the �rst temperature Doppler peak (l � 200), at scales below 1� the polarization-to-anisotropy ratio
is of order 10%, so that we expect polarized signals as high as � 5 �K. The prospects for detection at larger
scales are more favourable if the cosmic medium underwent a secondary ionization (reheating). In secondary
ionization models polarization at angular scales � >� 1� is produced at a new last-scattering surface placed



at a redshift zls � 100

1=3
0 (0:025=X)2=3, with X = xe
bh depending on the ionization degree xe, the baryon

density parameter 
b and the reduced Hubble constant h, or at the reheating onset zrh if zrh < zls. Thus a
characteristic angular scale (corresponding to the horizon size at zrh or zls) is introduced, which turns out to
be in the degree range. The polarization spectrum is now peaked at such a scale, and suppressed at smaller
scales.
The relevant parameters for secondary ionization models are the reheating redshift zrh, X, 
0, and the

parameters of perturbation spectrum (the amplitude, the primordial spectral index n; and the shape factor

0h for CDM models): The most important combination of parameters is given by the approximate expression
of the reheating optical depth for Thomson scattering

�rh ' 3:8� 10�2X

�1=2
0 z

3=2
rh : (7)

The amplitude of the main peak in the angular spectrum Pl is roughly proportional to �2rh for �rh <� 1,
although it also depends on other parameters such as the perturbation spectral index; its position scales as

l / �
1=3
rh X�1=3. These properties are clear in Figure 3 which gives angular spectra for a few CDM models.

For zrh = 90 (corresponding to �rh ' 0:5) we �nd T 2
0Pl;max � (1:8 �K)2 at lmax ' 20. Slightly higher levels

of polarization may be found with more favourable spectral shapes, in particular increasing the primordial
index n. (This e�ect is more evident if models are normalized according to the power-spectrum quadrupole
Qrms�PS.) However as we are going to discuss below, CBR signals larger than 1 �K, although they cannot be
excluded, are not very likely to occur.

Experimental constraints and theoretical expectations for the reheating strength

While the Gunn{Peterson test on high-redshift objects implies zrh >� 5, it is more di�cult to set stringent
upper limits on the strength of reheating. One might expect that signi�cant constraints on reheating should
come from upper limits on the spectral distortions of CBR. However the COBE{FIRAS limit on the (general-
ized) Comptonization parameter, yC < 1:5�10�5, cannot exclude a large zrh; even no-recombination scenarios
are possible if reionization is non-thermal (32). More signi�cant constraints come from anisotropy data. The
very existence of �rst Doppler peak implies �rh <� 1, and a more signi�cant result comes from the bulk of data
on the harmonic spectrum. Fitting intermediate-scale anisotropy data with the standard SCDM model, de
Bernardis et al. (33) give a best value zrh � 20, and an upper limit which depends on 
bh

2 and can be as large
as � 100 if 
bh

2 = 0:0075.
This result can be used to set constraints on �rh when combined with data on baryon density. Constraints

on 
b are obviously given by the nucleosynthesis requirements. Olive (34) derives 
bh
2 = 0:006+0:009�0:001 from

4He and 7Li data, but two mutually inconsistent results, 0:005 < 
bh
2 < 0:014 or 0:017 < 
bh

2 < 0:022 from
Deuterium abundance, according as to whether one accepts a high (35) or low (36) D/H ratio. Fukugita et al.
(37) compute a cosmic baryon budget from estimates of known contributions. From their results we derive the
best estimate 
bh = 0:013 + 0:001h1=2, and an upper limit 
bh = 0:025 + 0:003h1=2. All of these constraints
appear to be mutually consistent, with the exception of the Deuterium limit in the low-D/H case. From the
cosmic baryon budget and the results of de Bernardis et al. (33), for 
0 = 1 we can derive the upper limit
�rh <� 0:7, and a best estimate �rh � 0:05.
A low reheating optical depth is supported by explicit modelling of the ionizing mechanisms. Although a

very small fraction of collapsing baryons would be enough to reionize the rest of the universe at early times,
say at z � 30 or higher, it seems di�cult to trigger the formation of stars or QSO black holes which should
allow an early release of UV ionizing radiation. There was an early condensation of baryonic objects with
M � 105M� according to the CDM scenario, but an insu�cient virialization temperature prevented further
fragmentation or collapse of such condensed objects through H2 cooling. Thus one must wait until objects with
M >� 108M� condense. Two di�erent scenarios for the subsequent evolution of such objects are investigated
by Haiman and Loeb (38,39). The �rst considers bursts of star formation with a universal mass function.
The e�ciency of star formation is calibrated by requiring that the resulting metallicity at z � 3 is roughly as
observed, Z � 10�2Z�. The other scenario considers the production of low-luminosity, short-lifetime QSO's
with a universal light curve. The background cosmology here (39) is not standard CDM, but the so-called
\concordance" model, where the cosmological constant provides about 2/3 of the critical mass, but this makes
no important di�erence. The basic requirement is now to match the observed luminosity function at z <� 5. In
both cases the growing number of expanding HII bubbles �lls up the universe before z � 10, and the resulting
optical depth is �rh ' 0:05� 0:1 for stars and ' 0:05 for QSO's.



FIGURE 4. FDF isocontours in the (�1; �2) plane for �xed extremal frequencies 20 and 90 GHz. The minimum FDF

is close to SPOrt intermediate frequencies.

We can thereby conclude that the polarized CBR signal at 7� is most likely to be found in the sub-�K range.

THE SEPARATION OF FOREGROUNDS

The separation of the contributions to polarized signals must be based on the di�erent spectral and spatial
behaviours of foregrounds and CBR. Multifrequency observations thereby play a fundamental role. We per-
formed a preliminary analysis taking advantage of Dodelson's analytical formalism (40). This formalism allows
us to estimate the experiment e�ective sensitivity for any signal component after subtracting other contribu-
tions on a single-pixel basis (or alternatively, on a single-mode basis after a spherical harmonic expansion).
Let us consider an experiment measuring the total signal at frequencies �1, �2, : : : �m and intended to extract
the CBR and nf foregrounds. Introducing the m-dimensional vectors S, N and Fi for the detected signal,
instrumental noise and foreground shapes respectively, we have S =

Pnf

i=0 s
i
F
i+N, with i = 0 denoting CBR,

and the amplitudes si to be determined with the experiment. The problem is at which accuracy we can deter-
mine si when the noise is completely described by the auto- and cross-correlation coe�cients Cjk =



N�jN�k

�
.

Focusing our attention on CBR and neglecting cosmic variance, the e�ective variance for one pixel or mode
amplitude is given by

�2cbr = (FDF )2
h
�(0)

i2
+ �2shape; (8)

where the foreground degradation factor FDF describes the experiment sensitivity after removal of foregrounds
with perfectly known spectral shapes, and �shape takes into account uncertainties in the spectral shapes. The
computation of these parameters requires a matrix Kij depending on Fi and noise cross-correlations (40). If

all channels have equal and uncorrelated noise �1ch, then �(0) = �1ch=
p
Nch and Kij =

P
k;l F

i
�k
F j
�l
. The �nal

results provided by Dodelson are FDF =
q
(K�1)

00
and

�2shape =

8<
:
 

nfX
i=1

S
i

!
�
2
4 nfX
j=0

�
K�1

�0j
F
j

3
5
9=
;

2

; (9)

where Si are the true foreground contributions to S, whose spectral shapes may di�er from the assumed Fi.
Systematic contributions to �shape may come from neglecting the contribution of some foreground component
in the Fj summation in Eq. (9). The best e�ective sensitivity for CBR is reached by a proper balance of two
contrasting e�ects, since increasing the number of �tted foregrounds makes �2shape smaller but FDF larger.
The parameter FDF only depends on spectral shapes and frequency channels. The FDF level contours

shown in Fig. 4 show that for the spectra given by Eqs. (1){(4) the channel con�guration of SPOrt is nearly
optimal for the assigned range (20{90 GHz). Table 3 reports the values of the above parameters for di�erent
treatments of SPOrt output. Column 1 in the Table gives the number of channels used for the foreground



TABLE 3. The FDF and �shape for various foreground treatments.

Con�guration FF Dust FDF �
(1)
shape �

(1)
cbr �

(2)
shape �

(2)
cbr

4 (22{90) Yes Yes 8.80 0.00 2.52 0.00 2.52
4 (22{90) No Yes 2.76 0.77 1.10 0.64 1.02
4 (22{90) No No 1.38 0.61 0.73 0.25 0.47
3 (22{60) No No 1.54 0.64 0.80 0.17 0.51
3 (22{60) Yes No 3.60 0.24 1.16 0.24 1.16
4* (22{60) No No 1.37 0.59 0.70 0.18 0.42
4* (22{60) Yes No 3.21 0.24 0.92 0.24 0.92

�ts and the frequency range. When the number of channels used is 3, the 90 GHz channel is not used; for
the con�guration labelled by 4*(22{60), which is not pertinent to the SPOrt present design, the computation
assumes two 60-GHz channels. The second and third column specify whether free-free and dust emission are
�tted. The results labelled by (1) (5-th and 6-th column) assume polarized intensities of 18 �K and 2 �K
for synchrotron and free-free, respectively, at 30 GHz, and the assumed spectral slopes are S = �3:2 and
F = �2:15; dust polarized emission is normalized to 1 �K at 200 GHz. For the results labelled by (2) we

normalize synchrotron to 12 �K and dust to 0.15 �K at the same frequencies as above. The quantities �
(1)
cbr and

�
(2)
cbr, although they refer to the total sky coverage, are computed treating �shape as a systematic error. Clearly

the best results are found when free-free and dust emission are not �tted (so that �2shape 6= 0). Using four

channels we have FDF = 1:38 and �
(1)
shape = 0:61 �K, and using SPOrt total-coverage instrumental sensitivity

from the above numbers we get �
(1)
cbr = 0.73 �K. For �

(2)
cbr we can �nd some results even lower than 0.5 �K.

Slightly higher numbers are found using three channels for the synchrotron �t. The conclusion is that if dust
emission is low, then the fourth channel adds little to the determination of CBR polarization in a single-pixel
analysis; but if dust is important, it should probably not be included in a �tting together with synchrotron.
A good strategy for data analysis may be the following, to use three channels up to 60 GHz for synchrotron
and CBR polarized signals, and the 60 and 90 GHz channels for dust and CBR. With this approach it may
be possible to investigate the roles of dust and synchrotron separately. In any case, di�ering from anisotropy
measurements, it seems very di�cult to measure free-free emission.

At this point, we can state that a conservative estimate of SPOrt full-sky sensitivity to CBR polarization,
arising from a single-pixel analysis and taking into account a 50% e�ciency factor, is around 0.5{0.7 �K, the
uncertainty depending on the disturbance of free-free emission. However, considering free-free as a systematic
e�ect in �cbr is too pessimistic. Going beyond the single-pixel analysis, we should exploit the spatial distribution
of the signal. Spatial information is often exploited also using maps at other frequencies as templates, or for
some kind of spatial cross-correlations. Basically we can work in real space or in terms of modes (for instance,
using spherical harmonic expansions).

An important property of foregrounds is that they are more spatially correlated than CBR. This is well
known for the temperature anisotropy: we have CTl / l�3 for free-free (from COBE{DMR: see (7,8)) and
dust (from IRAS (41)), while CTl / [l(l+ 1)]�1 for the standard scale-invariant CBR spectrum. An important
question however is, whether this is true for polarized foregrounds, too. Sethi et al. (14) found that for dust

T 2
0CEl ' 8:9� 10�4l�1:3 (�K)2;

T 2
0CBl ' 1:0� 10�3l�1:4 (�K)2;

where the smaller (less negative) exponents mean smaller spatial correlations than for anisotropies. However
for CBR, too, the same inequality applies; as a result, polarized foregrounds seem to be more correlated than
polarized CBR, as supported from the angular spectra reported in Fig. 3. Provided this conclusion can be
generalized to the other foregrounds, a substantial improvement should come from a spatial or spectral analysis.

It is therefore reasonable to believe that the contribution of �shape can be signi�cantly reduced, and we

expect to be able to set �cbr � FDF�(0).
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FIGURE 5. Polarization contours in the (X; zrh) plane corresponding to 7� squared 
uctuations of 0.1, 0.25 and
0.5 �K2. The contours refer to CDM models with 
0 = 0:9 and 0.3 (full and dashed lines, respectively) and a

CDM+texture model with 
0 = 0:7 (dash-dotted). The dotted curves give the constant optical depth contours for


0 = 0:9 and �rh = 0:7 and 0.1. The horizontal dotted lines give the baryon density limits in ref. (34) and the best

value in ref. (37). The vertical line gives the best �t result of de Bernardis et al. (33).

CONCLUSIONS

From the analysis of the previous section we can assume that SPOrt e�ective sensitivity to CBR polarization
will be around 0.4 �K, (cfr. the 3-rd line in Table 3), or 0.5 �K including also the Galactic cut. This will allow
us to probe a signi�cant portion of parameter space for secondary ionization models. In order to check the
validity of this conclusion, we performed extensive computations of secondary ionization models using routines
of the SPOrtLIB library which is currently being built by the SPOrt collaboration. Some results are reported
in Fig. 5, which provides polarization level contours in the (zrh; X) plane for experiments with a 7� beamwidth.
The contours represent predictions from some cosmic structure models (with a primordial spectral index n = 1
and normalized to COBE{DMR spectral amplitude Qrms�PS = 18 �K) computed for several values of 
0. For
each value of 
0 (i.e., for each line style) the middle contour corresponds to the assumed full-sky sensitivity of
0.5 �K and thereby de�nes the region of the (zrh; X) plane where, according to the assumed model of cosmic
structure, the cosmological polarization is accessible to SPOrt; such a region extends towards the upper right
corner of the Figure and is larger for 
0 ' 0:7. The Figure also gives limits coming from the baryon density (for
the assumed value h = 0:7) and some curves of constant �rh. Comparing the locations of the model contours
with the �rh curves it is clear that CBR polarization can be detected very easily for optical depths � 0:7, i.e.
around the upper limit derived from de Bernardis et al. (33); for �rh � 0:1 SPOrt is likely to detect polarization
around its sensitivity limit.
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